I. POLICY

Thermal capsulorrhaphy is considered **not medically necessary** as a treatment of joint instability, including, but not limited to the shoulder, knee, and elbow.

II. PRODUCT VARIATIONS

This policy is applicable to all programs and products administered by Capital BlueCross unless otherwise indicated below.

FEP PPO*

*Refer to FEP Medical Policy Manual MP-7.01.82 Thermal Capsulorrhaphy as a Treatment of Joint Instability. The FEP Medical Policy manual can be found at: www.fepblue.org

III. DESCRIPTION/BACKGROUND

Thermal capsulorrhaphy uses thermal energy to restructure collagen in the capsule or ligaments to reduce the capsule size. This procedure has primarily been evaluated for shoulder joint instability but may also be proposed to treat capsular laxity in other joints.

Shoulder instability is a relatively common occurrence, reported in between 2% and 8% of the population. The condition may arise from a single traumatic event (i.e., subluxation or dislocation), repeated microtrauma or constitutional ligamentous laxity, resulting in deformation and/or damage in the glenohumeral capsule and ligaments. Shoulder instability may be categorized according to the movement of the humeral head, i.e., either as anterior, posterior, inferior, or multidirectional instability. Multidirectional instability most frequently consists of...
anterior and inferior subluxation or dislocation. Inferior movement is also classified as multidirectional.

Initial treatment of shoulder subluxation or dislocation is conservative in nature followed by range of motion and strengthening exercises. However, if instability persists, either activity modifications or surgical treatment may be considered. Activity modification may be appropriate for those patients that can identify a single motion that aggravates instability, such as overhead throwing motions. Surgical treatment may be considered in those who are unwilling to give up specific activities (i.e., related to sports) or when instability occurs frequently or during daily activities.

Surgery consists of inspection of the shoulder joint with repair, reattachment, or tightening of the labrum, ligaments or capsule, performed either with sutures or sutures attached to absorbable tacks or anchors. While arthroscopic approaches have been investigated over the past decade, their success has been controversial due to a higher rate of recurrent instability compared with open techniques, thought to be related in part to the lack of restoration of capsular tension. Reports of arthroscopic techniques have described various suturing techniques for tightening the capsule, which require mastery of technically difficult arthroscopic intra-articular knot tying.

Thermal capsulorrhaphy has been proposed as a technically simpler arthroscopic technique for tightening the capsule and ligaments. The technique is based on the observation that the use of nonablative levels of radiofrequency thermal energy can alter the collagen in the glenohumeral ligaments and/or capsule, resulting in their shrinkage and a decrease in capsular volume, both thought to restore capsular tension. Thermal capsulorrhaphy may be used in conjunction with arthroscopic repair of torn ligaments or other structures (i.e., repair of Bankart or SLAP [superior labrum anterior and posterior] lesion). In addition, thermal capsulorrhaphy has also been investigated as an arthroscopic treatment of glenohumeral laxity, a common injury among overhead athletes, such as baseball players, resulting in internal impingement of the posterior rotator cuff against the glenoid labrum. Internal impingement is often accompanied by posterior rotator cuff tearing and labral injury. Thermal capsulorrhaphy has also been proposed as a sole arthroscopic treatment. For example, the technique may be considered in patients with chronic shoulder pain without recognized instability, based on the theory that the pain may be related to occult or microinstability. This diagnosis may be considered when a diagnostic arthroscopy reveals only lax ligaments and is commonly seen among baseball players. Finally, thermal capsulorrhaphy may be considered in patients with congenital ligamentous laxity, such as Ehlers-Danlos or Marfan’s syndrome.

While thermal capsulorrhaphy was initially investigated using laser energy, the use of radiofrequency probes are now more commonly used. Devices include Oratec ORA-50 Monopolar RF Generator (Oratec Interventions, Menlo Park, CA) and Arthrocare (Arthrocare Corporation, Sunnyvale, CA).
IV. RATIONALE

At the time this evidence review was created, there were minimal data published in the peer-reviewed literature on the use of thermal capsulorrhaphy, and there were a number of unresolved issues on the technique. The most recent update was performed through May 11, 2015. Following is a summary of the key literature to date.

Thermal Capsulorrhaphy of the Shoulder
The evidence on thermal capsulorrhaphy for the shoulder is derived from 1 small randomized controlled trial (RCT) several nonrandomized comparative studies, and 2 large case series with midterm follow-up. Reports of adverse events are also reviewed.

Randomized Controlled Trials
In 2006, a Canadian workgroup reported a multicenter RCT that had been recruiting subjects since 1999. Enrollment was slower than anticipated; 19 patients treated with thermal capsulorrhaphy and 15 subjects treated with surgical repair had completed 2-year follow-up as of publication. This trial is listed as being completed as of March 2010 with an enrollment of 58 patients (see Table 1); however, no results of this trial are identified in the published literature.

Levitz et al reported a study of 82 baseball players undergoing arthroscopic surgery for internal impingement in 2001. The first 51 patients underwent traditional arthroscopic surgery, consisting of debridement of tears in the rotator cuff and attachment of labral tears. There was no attempt to reduce the capsular laxity. The next 31 patients underwent traditional arthroscopic surgery and also underwent thermal capsulorrhaphy. The main outcome measure was time to return to competition. Among those who did not undergo thermal capsulorrhaphy, 80% returned to competition at a mean time of 7.2 months, with 67% still competing after 30 months. Among those who did undergo thermal capsulorrhaphy, 93% returned to competition at a mean time of 8.4 months, with 90% still competing after 30 months.

Savoie and Field compared the outcomes of patients with multidirectional instability who were treated with either thermal capsulorrhaphy (n=30) or arthroscopic capsular shift (i.e., suture repair) (n=26) in 2000. Additional arthroscopic procedures were performed in both groups, as needed. Two patients treated with thermal capsulorrhaphy had an unsatisfactory outcome compared with 3 patients in the suture repair group.

Chen et al reported on 40 patients who underwent combined arthroscopic labral repair and thermal capsulorrhaphy; the results were compared with a historical control group of 32 patients who underwent the same surgery without capsulorrhaphy in 2005. There was no difference in outcomes in the 2 groups, leading the authors to conclude that thermal capsulorrhaphy neither improved nor compromised the results of conventional arthroscopic treatment.
In 2001, Levy et al reported on 90 patients (99 shoulders) with shoulder instability treated with thermal capsulorrhaphy using either radiofrequency (34 patients, 38 shoulders) or laser energy (56 patients, 61 shoulders) and followed up for 23 to 40 months. In the laser-treated group, 59% of the patients considered their shoulder to be "better" or "much better," with a 36.1% failure rate. In the radiofrequency treated group, 76.9% of patients felt "better" or "much better," with a 23.7% failure rate.

Case Series
D’Alessandro et al published the results of a prospective study of 84 patients who underwent thermal capsulorrhaphy for various indications in 2004. With an average follow-up of 38 months, 37% of patients reported unsatisfactory results, based on reports of pain, instability, return to work, and the American Shoulder and Elbow Surgeons Shoulder Assessment score. The authors reported that the high rate of unsatisfactory results was of great concern. Levine et al reported that the initial wave of enthusiasm for thermal capsulorrhaphy has largely subsided, given the negative results reported by D’Alessandro et al.

Two- to 6-year follow-up was reported on 85 of 100 consecutive patients treated with thermal capsulorrhaphy for glenohumeral instability in 2007. Thirty-seven patients (43.5%) were considered to have had a failed procedure, defined as recurrent instability, revision of surgery, and recalcitrant pain or stiffness requiring manipulation. Deterioration of efficacy over time was reported from a series of 12 overhead athletes (volleyball, tennis, baseball, swimming) who presented with internal impingement at an average age of 27 years (range, 23-34 years). At 2 years after surgery, the modified Rowe score had increased from 45.8 to 90.4; at 7 years postoperatively, the Rowe score had decreased to 70.4 and visual analog scale score for pain was 4.8. Twenty-five percent of athletes reported that they had returned to their preinjury level of competition, 25% played at a lower level, and 50% had stopped because of their shoulder pain.

Other Joints
Literature on thermal capsulorrhaphy for joints other than the shoulder is limited. One small case series (13 patients) from 2007 reported use of thermal capsulorrhaphy for palmar midcarpal instability. A 2008 publication describes thermal capsulorrhaphy for the parapatellar capsule as controversial.

Adverse Events
In 2007, Good et al conducted a retrospective chart review on patients who had been referred for shoulder stiffness and had developed glenohumeral chondrolysis. Of the 8 patients who had developed glenohumeral chondrolysis after shoulder arthroscopy, 5 had undergone thermal capsulorrhaphy for shoulder instability, and 3 had a thermal procedure with labral repair or synovectomy. The onset was described as early and rapid, with repeat arthroscopy to confirm the
diagnosis of chondrolysis and rule out infection at an average of 8 months after the initial shoulder arthroscopy. The mean age of the patients was 23 years (range, 15-39 years). None of the patients had evidence of chondral damage at the index arthroscopy, and none had received postoperative intra-articular pain pumps, a procedure which has also been associated with chondrolysis. The patients required between 1 and 6 procedures after the onset of chondrolysis to manage their pain, including glenoid allograft, humeral head arthroplasty, and total shoulder arthroplasty.

Good et al identified an additional 10 reported cases of glenohumeral chondrolysis following shoulder arthroscopy in the English-language literature. Five of the 10 cases occurred after the use of gentian violet dye injection into the joint to identify a rotator cuff tear; this technique has since been abandoned. Of the remaining 5 reported cases, 4 involved the use of a thermal device during the procedure. An accompanying editorial by the journal’s editors concluded that “pending evidence to the contrary, shoulder thermal capsulorrhaphy is a procedure in which these and other reported risks outweigh any potential benefits.”

A 2010 review of shoulder instability in patients with joint hyperlaxity indicates that although initial results with thermal capsulorrhaphy seemed promising, subsequent studies with longer follow-up showed “unacceptably high rates of failure and postoperative complications,” including cases of postoperative axillary nerve palsy and transient deltoid weakness. Abnormal capsular tissue has also been observed in the areas of previous thermal treatment, with either severe thickening or thin, friable deficient capsule.

In a 2011 review, Virk and Kocher describe thermal capsulorrhaphy as a failed new technology in sports medicine.

Summary of Evidence
The literature does not support use of thermal capsulorrhaphy. The few available comparative studies do not support that this procedure is an efficacious treatment for shoulder instability. The case series report a high rate of unsatisfactory results and complications, raising the potential for
POLICY TITLE: THERMAL CAPSULORRHAPHY AS A TREATMENT OF JOINT INSTABILITY

POLICY NUMBER: MP-1.086

a net harm. Because of the lack of efficacy and potential for harm, this procedure is considered not medically necessary.

Practice Guidelines and Position Statements
In 2010, the American Academy of Orthopaedic Surgeons published patient information on thermal capsular shrinkage.18 The information provided stated that thermal capsular shrinkage was developed as a less invasive way to treat a shoulder that is loose and frequently dislocates. Early short-term results were promising and the procedure gained in popularity. However, more recent results over a longer follow-up period have shown a much higher failure rate and more complications than were first reported. As a result, the procedure is used less frequently.

U.S. Preventive Services Task Force Recommendations
Not applicable.

Medicare National Coverage
There is no national coverage determination (NCD).

V. DEFINITIONS

CAPSULORRHAPHY refers to suture of a joint capsule or a tear in a capsule.

GLENOHUMERAL pertains to the humerus and the glenoid cavity.

MICROINSTABILITY refers to instability due to particle/Kinetic-theoretical effects, typically occurring on small scales, as opposed to those derivable from fluid models valid on larger scales.

MICROTTRAUMA refers to a very small injury.

RADIOFREQUENCY refers to radiant energy of a certain frequency range.

SUBLUXATION refers to a partial or incomplete dislocation.

VI. BENEFIT VARIATIONS

The existence of this medical policy does not mean that this service is a covered benefit under the member’s contract. Benefit determinations should be based in all cases on the applicable contract language. Medical policies do not constitute a description of benefits. A member’s individual or group customer benefits govern which services are covered, which are excluded, and which are subject to benefit limits and which require preauthorization. Members and providers should consult the member’s benefit information or contact Capital for benefit information.
VII. DISCLAIMER

Capital’s medical policies are developed to assist in administering a member’s benefits, do not constitute medical advice and are subject to change. Treating providers are solely responsible for medical advice and treatment of members. Members should discuss any medical policy related to their coverage or condition with their provider and consult their benefit information to determine if the service is covered. If there is a discrepancy between this medical policy and a member’s benefit information, the benefit information will govern. Capital considers the information contained in this medical policy to be proprietary and it may only be disseminated as permitted by law.

VIII. CODING INFORMATION

Note: This list of codes may not be all-inclusive, and codes are subject to change at any time. The identification of a code in this section does not denote coverage as coverage is determined by the terms of member benefit information. In addition, not all covered services are eligible for separate reimbursement.

Thermal capsulorrhaphy is considered not medically necessary as a treatment of joint instability, including, but not limited to the shoulder, knee, and elbow; therefore not covered:

<table>
<thead>
<tr>
<th>CPT Codes®</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>29999</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>HCPCS Code</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>S2300</td>
<td>Arthroscopy, shoulder, surgical; with thermally-induced capsulorrhaphy</td>
</tr>
</tbody>
</table>

IX. REFERENCES

3. Mohtadi NG, Hollinshead RM, Ceponis PJ, et al. A multi-centre randomized controlled trial comparing electrothermal arthroscopic capsulorrhaphy versus open inferior capsular shift for patients with shoulder instability: protocol implementation and
interim performance: lessons learned from conducting a multi-centre RCT [ISRCTN68224911; NCT00251160]. Trials. 2006; 7:4. PMID 16542033

15. Lubowitz JH, Poehling GG. Glenohumeral thermal capsulorrhaphy is not recommended--shoulder chondrolysis requires additional research. Arthroscopy. Jul 2007;23(7):687. PMID 17637401

X. POLICY HISTORY

<table>
<thead>
<tr>
<th>MP 1.086</th>
<th>CAC 1/28/03</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>CAC 7/29/03</td>
</tr>
<tr>
<td></td>
<td>CAC 1/25/05</td>
</tr>
<tr>
<td></td>
<td>CAC 2/28/06</td>
</tr>
<tr>
<td></td>
<td>CAC 2/27/07</td>
</tr>
<tr>
<td></td>
<td>CAC 3/25/08</td>
</tr>
<tr>
<td></td>
<td>CAC 5/26/09</td>
</tr>
<tr>
<td></td>
<td>CAC 11/30/10 Revised policy statement from medically necessary to not medically necessary. Adopted BCBSA</td>
</tr>
<tr>
<td></td>
<td>CAC 11/22/11 Consensus</td>
</tr>
<tr>
<td></td>
<td>7/26/13 Admin coding review completed</td>
</tr>
<tr>
<td></td>
<td>CAC 9/24/13 Consensus. No change to policy statements. Rationale section added. Added FEP variation to reference the FEP policy manual. References reviewed and updated.</td>
</tr>
<tr>
<td></td>
<td>CAC 9/30/14 Consensus. No change to policy statements. Rationale and References sections updated.</td>
</tr>
<tr>
<td></td>
<td>CAC 9/29/15 Consensus review. No change to the policy statement. Reference and rationale update. Coding Reviewed</td>
</tr>
<tr>
<td>POLICY TITLE</td>
<td>THERMAL CAPSULORRHAPHY AS A TREATMENT OF JOINT INSTABILITY</td>
</tr>
<tr>
<td>----------------------------------</td>
<td>---</td>
</tr>
<tr>
<td>POLICY NUMBER</td>
<td>MP- 1.086</td>
</tr>
</tbody>
</table>