

MEDICAL POLICY

POLICY TITLE	SURGICAL TREATMENT OF SLEEP APNEA AND SNORING
POLICY NUMBER	MP 1.128

CLINICAL BENEFIT	<input type="checkbox"/> MINIMIZE SAFETY RISK OR CONCERN. <input checked="" type="checkbox"/> MINIMIZE HARMFUL OR INEFFECTIVE INTERVENTIONS. <input type="checkbox"/> ASSURE APPROPRIATE LEVEL OF CARE. <input type="checkbox"/> ASSURE APPROPRIATE DURATION OF SERVICE FOR INTERVENTIONS. <input checked="" type="checkbox"/> ASSURE THAT RECOMMENDED MEDICAL PREREQUISITES HAVE BEEN MET. <input type="checkbox"/> ASSURE APPROPRIATE SITE OF TREATMENT OR SERVICE.
Effective Date:	2/1/2026

POLICY

Obstructive Sleep Apnea

Palatopharyngoplasty (e.g., uvulopalatopharyngoplasty, uvulopharyngoplasty, uvulopalatal flap, expansion sphincter pharyngoplasty, lateral pharyngoplasty, palatal advancement pharyngoplasty, relocation pharyngoplasty) may be considered **medically necessary** for the treatment of clinically significant obstructive sleep apnea (OSA) syndrome in appropriately select adults who have failed an adequate trial of continuous positive airway pressure (CPAP) or failed an adequate trial of an oral appliance. Clinically significant OSA is defined as those individuals who have:

- Apnea/Hypopnea Index (AHI) or Respiratory Disturbance Index (RDI) of 15 or more events per hour, or
- AHI or RDI of at least 5 events per hour with 1 or more signs or symptoms associated with OSA (e.g., excessive daytime sleepiness, hypertension, cardiovascular heart disease, or stroke).

Hyoid suspension, surgical modification of the tongue, and/or maxillofacial surgery, including mandibular-maxillary advancement (MMA), may be considered **medically necessary** in appropriately selected adults with clinically significant OSA and objective documentation of hypopharyngeal obstruction who have failed an adequate trial of CPAP or failed an adequate trial of an oral appliance. Clinically significant OSA is defined as those individuals who have:

- AHI or RDI of 15 or more events per hour, or
- AHI or RDI of at least 5 events per hour with 1 or more signs or symptoms associated with OSA (e.g., excessive daytime sleepiness, hypertension, cardiovascular heart disease, or stroke).

Adenotonsillectomy may be considered **medically necessary** in pediatric individuals with clinically significant OSA and hypertrophic tonsils. Clinically significant OSA is defined as those pediatric individuals who have:

- AHI or RDI of at least 5 per hour, or
- AHI or RDI of at least 1.5 per hour in an individual with excessive daytime sleepiness, behavioral problems, or hyperactivity.

MEDICAL POLICY

POLICY TITLE	SURGICAL TREATMENT OF SLEEP APNEA AND SNORING
POLICY NUMBER	MP 1.128

Hypoglossal nerve stimulation may be considered **medically necessary** in adults with OSA under the following conditions:

- Age \geq 18 years; AND
- AHI \geq 15 and \leq 100 with \leq 25% central apneas; AND
- CPAP failure (residual AHI \geq 15 or failure to use CPAP \geq 4 hr per night for \geq 5 nights per week) or inability to tolerate CPAP; AND
- Body mass index \leq 35 kg/m²; AND
- Absence of complete concentric collapse at the soft palate level (see Policy Guidelines).

Hypoglossal nerve stimulation may be considered **medically necessary** in adolescents or young adults with Down syndrome and OSA under the following conditions:

- Age 13 to 18 years; AND
- AHI $>$ 10 and $<$ 50 with \leq 25% central apneas after prior adenotonsillectomy; AND
- Have either tracheotomy or be ineffectively treated with CPAP due to noncompliance, discomfort, undesirable side effects, persistent symptoms despite compliance use, or refusal to use the device; AND
- Body mass index \leq 95th percentile for age; AND
- Absence of complete concentric collapse at the soft palate level (See Policy Guidelines).

Surgical treatment of OSA that does not meet the criteria above would be considered **investigational** as there is insufficient evidence to support a conclusion concerning the health outcomes or benefits associated with this procedure.

The following minimally invasive surgical procedures are considered **investigational** for the sole or adjunctive treatment of OSA or upper airway resistance syndrome as there is insufficient evidence to support a conclusion concerning the health outcomes or benefits associated with this procedure:

- Laser-assisted palatoplasty or radiofrequency volumetric tissue reduction of the palatal tissues;
- Radiofrequency volumetric tissue reduction of the tongue, with or without radiofrequency reduction of the palatal tissues;
- Palatal stiffening procedures including, but not limited to, cautery-assisted palatal stiffening operation, injection of a sclerosing agent, and the implantation of palatal implants;
- Tongue base suspension;
- All other minimally invasive surgical procedures not described above.

Implantable hypoglossal nerve stimulators are considered **investigational** for all indications other than listed above as there is insufficient evidence to support a conclusion concerning the health outcomes or benefits associated with this procedure.

MEDICAL POLICY

POLICY TITLE	SURGICAL TREATMENT OF SLEEP APNEA AND SNORING
POLICY NUMBER	MP 1.128

All interventions, including laser-assisted palatoplasty, radiofrequency volumetric tissue reduction of the palate, or palatal stiffening procedures, are considered **investigational** for the treatment of snoring in the absence of documented OSA as there is insufficient evidence to support a conclusion concerning the health outcomes or benefits associated with this procedure; snoring alone is not considered a medical condition.

Central Sleep Apnea

The use of phrenic nerve stimulation for central sleep apnea is considered **investigational** in all situations as there is insufficient evidence to support a conclusion concerning the health outcomes or benefits associated with this procedure.

POLICY GUIDELINES

Septoplasty for obstructive sleep disorders is addressed in **MP 1.004**.

Continuous positive airway pressure is the preferred first-line treatment for most patients. A smaller number of patients may use oral appliances as a first-line treatment (see evidence review 2.045). The Apnea/Hypopnea Index is the total number events (apnea or hypopnea) per hour of recorded sleep. The Respiratory Disturbance Index is the total number events (apnea or hypopnea) per hour of recording time. An obstructive apnea is defined as at least a 10-second cessation of respiration associated with ongoing ventilatory effort. Hypopnea is defined as an abnormal respiratory event lasting at least 10 seconds with at least a 30% reduction in thoracoabdominal movement or airflow compared with baseline and with at least a 4% oxygen desaturation.

The hypoglossal nerve (cranial nerve XII) innervates the genioglossus muscle. Stimulation of the nerve causes anterior movement and stiffening of the tongue and dilation of the pharynx. Hypoglossal nerve stimulation reduces airway collapsibility and alleviates obstruction at both the level of the soft palate and tongue base.

Drug-induced sleep endoscopy (DISE) replicates sleep with an infusion of propofol. DISE will suggest either a flat, anterior-posterior collapse or complete circumferential oropharyngeal collapse. Concentric collapse decreases the success of hypoglossal nerve stimulation and is an exclusion criteria from the Food and Drug Administration.

Cross-References:

- MP 1.004 Cosmetic and Reconstructive Surgery**
- MP 1.101 Orthognathic Surgery**
- MP 2.045 Diagnosis of Obstructive Sleep Apnea**
- MP 2.062 Temporomandibular Disorder**
- MP 2.372 Occipital Nerve Stimulation**

PRODUCT VARIATIONS

This policy is only applicable to certain programs and products administered by Capital Blue Cross and subject to benefit variations. Please see additional information below.

MEDICAL POLICY

POLICY TITLE	SURGICAL TREATMENT OF SLEEP APNEA AND SNORING
POLICY NUMBER	MP 1.128

FEP PPO: Refer to FEP Medical Policy Manual. The FEP Medical Policy manual can be found at:

<https://www.fepblue.org/benefit-plans/medical-policies-and-utilization-management-guidelines/medical-policies> .

DESCRIPTION/BACKGROUND

Obstructive sleep apnea

Obstructive sleep apnea (OSA) is characterized by repetitive episodes of upper airway obstruction due to the collapse and obstruction of the upper airway during sleep. The hallmark symptom of OSA is excessive daytime sleepiness, and the typical clinical sign of OSA is snoring, which can abruptly cease and be followed by gasping associated with a brief arousal from sleep. The snoring resumes when the patient falls back to sleep, and the cycle of snoring/apnea/arousal may be repeated as frequently as every minute throughout the night. Sleep fragmentation associated with the repeated arousal during sleep can impair daytime activity. For example, adults with OSA-associated daytime somnolence are thought to be at higher risk for accidents involving motorized vehicles (i.e., cars, trucks, heavy equipment). OSA in children may result in neurocognitive impairment and behavioral problems. In addition, OSA affects the cardiovascular and pulmonary systems. For example, apnea leads to periods of hypoxia, alveolar hypoventilation, hypercapnia, and acidosis. This, in turn, can cause systemic hypertension, cardiac arrhythmias, and cor pulmonale. Systemic hypertension is common in patients with OSA. Severe OSA is associated with decreased survival, presumably related to severe hypoxemia, hypertension, or an increase in automobile accidents related to overwhelming sleepiness.

There are racial and ethnic health disparities seen for OSA, impacting the prevalence of disease and accessibility to treatment options, particularly affecting children. Black children are 4 to 6 times more likely to have OSA than White children. Among young adults 26 years of age or younger, African American individuals are 88% more likely to have OSA compared to White individuals. Another study found that African American individuals 65 years of age and older were 2.1 times more likely to have severe OSA than White individuals of the same age group. These health disparities may affect accessibility to treatment for OSA and impact health outcomes. One analysis of insurance claims data, including over 500,000 patients with a diagnosis of OSA, found that increased age above the 18- to 29- year range ($p<.001$) and Black race ($p=.020$) were independently associated with a decreased likelihood of receiving surgery for sleep apnea. Lee et al (2022) found that Black men had a continuous mortality increase specifically related to OSA over the study period (1999 to 2019; annual percentage change 2.7%; 95% confidence interval, 1.2 to 4.2) compared to any other racial group.

Regulatory Status

The regulatory status of minimally invasive surgical interventions is shown in Table 1.

MEDICAL POLICY

POLICY TITLE	SURGICAL TREATMENT OF SLEEP APNEA AND SNORING					
POLICY NUMBER	MP 1.128					

Table 1. Minimally Invasive Surgical Interventions for Obstructive Sleep Apnea

Interventions	Devices (predicate or prior name)	Manufacturer (previously owner)	Indication	PMA/ 510(k)	Year	FDA Product Code
LAUP	Various					
Radiofrequency ablation	Somnoplasty®		Simple snoring and for the base of the tongue for OSA	K982717	1998	GEI
Palatal Implant	Pillar® Palatal Implant	Pillar Palatal (Restore Medical/ Medtronic)	Stiffening the soft palate which may reduce the severity of snoring and incidence of airway obstructions in patients with mild-to-moderate OSA	K040417	2004	LRK
Tongue base suspension	AIRvance® (Repose)	Medtronic	OSA and/or snoring. The AIRvance™ Bone Screw System is also suitable for the performance of a hyoid suspension	K122391	1999	LRK
Tongue base suspension	Encore™ (PRELUDE III)	Siesta Medical	Treatment of mild or moderate OSA and/or snoring	K111179	2011	ORY

MEDICAL POLICY

POLICY TITLE	SURGICAL TREATMENT OF SLEEP APNEA AND SNORING					
POLICY NUMBER	MP 1.128					

Hypoglossal nerve stimulation	Inspire® (Inspire II Upper Airway Stimulation)	Inspire Medical Systems	Patients ≥18 years with AHI ≥15 and ≤100 who have failed (AHI >15 despite CPAP usage) or cannot tolerate (<4 h use per night for ≥5 nights per week) CPAP and do not have complete concentric collapse at the soft palate level. Patients between ages 18 and 21 should also be contraindicated for or not effectively treated by adenotonsillectomy. Inspire is also indicated in pediatric patients ages 13 to 18 years with Down Syndrome and severe sleep apnea (AHI >10 and <50).	P130008, S039	2014	MNQ
Hypoglossal nerve stimulation	aura6000™	LivaNova (ImThera Medical)		IDE	2014	
Hypoglossal nerve stimulation	Genio™	Nyxoa		European CE Mark	2019	

AHI: Apnea/Hypopnea Index; CPAP: continuous positive airway pressure; IDE: investigational device exemption; LAUP: Laser-assisted uvulopalatoplasty; OSA: obstructive sleep apnea.

MEDICAL POLICY

POLICY TITLE	SURGICAL TREATMENT OF SLEEP APNEA AND SNORING
POLICY NUMBER	MP 1.128

The expanded indication for hypoglossal nerve stimulation in patients age 18 to 21 was based on patients with Down Syndrome and is contingent on a post-approval study of the Inspire® UAS in this age group. The post-approval study will be a multicenter, single-arm, prospective registry with 60 pediatric patients age 18 to 21. Visits will be scheduled at pre-implant, post-implant, 6 months, and yearly thereafter through 5 years.

Central Sleep Apnea

Central sleep apnea (CSA) is characterized by repetitive cessation or decrease in both airflow and ventilatory effort during sleep. Central sleep apnea may be idiopathic or secondary (associated with a medical condition such as congestive heart failure, drugs, or high-altitude breathing). Apneas associated with Cheyne-Stokes respiration are common among patients with heart failure (HF) or who have had strokes, and account for about half of the population with CSA. Central sleep apnea is less common than obstructive sleep apnea. Based on analyses of a large community-based cohort of participants 40 years of age and older in the Sleep Heart Health Study, the estimated prevalence of CSA and obstructive sleep apnea are 0.9% and 47.6%, respectively. Risk factors for CSA include age (>65 years), male gender, history of HF, history of stroke, other medical conditions (acromegaly, renal failure, atrial fibrillation, low cervical tetraplegia, and primary mitochondrial diseases), and opioid use. Individuals with CSA have difficulty maintaining sleep and therefore experience excessive daytime sleepiness, poor concentration, and morning headaches, and are at higher risk for accidents and injuries.

Treatment

The goal of treatment is to normalize sleep-related breathing patterns. Because most cases of CSA are secondary to an underlying condition, central nervous system pathology, or medication side effects, treatment of the underlying condition or removal of the medication may improve CSA. Treatment recommendations differ depending on the classification of CSA as either hyperventilation-related (most common, including primary CSA and those relating to HF or high-altitude breathing) or hypoventilation-related (less common, relating to central nervous system diseases or use of nervous system suppressing drugs such as opioids).

For patients with hyperventilation-related CSA, continuous positive airway pressure (CPAP) is considered first-line therapy. Due to CPAP discomfort, patient compliance may become an issue. Supplemental oxygen during sleep may be considered for patients experiencing hypoxia during sleep or who cannot tolerate CPAP. Patients with CSA due to HF with an ejection fraction >45%, and who are not responding with CPAP and oxygen therapy, may consider bilevel positive airway pressure or adaptive servo-ventilation (ASV) as second-line therapy. Bilevel positive airway pressure devices have 2 pressure settings, 1 for inhalation and 1 for exhalation. Adaptive servo-ventilation uses both inspiratory and expiratory pressure and titrates the pressure to maintain adequate air movement. However, a clinical trial reported increased cardiovascular mortality with ASV in patients with CSA due to HF and with an ejection fraction <45%, and therefore, ASV is not recommended for this group.

For patients with hypoventilation-related CSA, first-line therapy is bilevel positive airway pressure.

MEDICAL POLICY

POLICY TITLE	SURGICAL TREATMENT OF SLEEP APNEA AND SNORING
POLICY NUMBER	MP 1.128

Pharmacologic therapy with a respiratory stimulant may be recommended to patients with hyper- or hypoventilation CSA who do not benefit from positive airway pressure devices, though close monitoring is necessary due to the potential for adverse effects such as rapid heart rate, high blood pressure, and panic attacks.

Phrenic Nerve Stimulation

Several phrenic nerve stimulation systems are available for patients who are ventilator dependent. These systems stimulate the phrenic nerve in the chest, which sends signals to the diaphragm to restore a normal breathing pattern. Currently, there is 1 phrenic nerve stimulation device approved by the U.S. Food and Drug Administration (FDA) for CSA, the remedē System (Zoll Medical). A cardiologist implants the battery-powered device under the skin in the right or left pectoral region using local anesthesia. The device has 2 leads, 1 to stimulate a phrenic nerve (either the left pericardiophrenic or right brachiocephalic vein) and 1 to sense breathing. The device runs on an algorithm that activates automatically at night when the patient is in a sleeping position and suspends therapy when the patient sits up. Patient-specific changes in programming can be conducted externally by a programmer.

Regulatory Status

In October 2017, the remedē System (Respicardia, Inc [now Zoll Medical]; Minnetonka, MN) was approved by the FDA through the premarket approval application process (PMA #P160039). The approved indication is for the treatment of moderate to severe CSA in adults. Follow-up will continue for 5 years in the post-approval study. FDA product code: PSR.

RATIONALE

Summary of Evidence

OSA

For individuals who have OSA who receive laser-assisted uvulopalatoplasty, the evidence includes a single randomized controlled trial (RCT). Relevant outcomes are symptoms, functional outcomes, quality of life, and treatment-related morbidity. The trial indicates reductions in snoring, but limited efficacy on the Apnea/Hypopnea Index (AHI) or symptoms in patients with mild-to-moderate OSA. The evidence is insufficient to determine the effects of the technology on health outcomes.

For individuals who have OSA who receive a radiofrequency volumetric reduction of palatal tissues and base of tongue, the evidence includes 2 sham-controlled randomized trials. Relevant outcomes are symptoms, functional outcomes, quality of life, and treatment-related morbidity. Single-stage radiofrequency to palatal tissues did not improve outcomes compared with sham. Multiple sessions of radiofrequency to the palate and base of tongue did not significantly (statistically or clinically) improve AHI, and the improvement in functional outcomes was not clinically significant. The prospective cohort study included 56 patients with mild-to-moderate OSA who received 3 sessions of office-based multilevel RFA. Results demonstrated improvement in AHI and Oxygen Desaturation Index (ODI) at the 6-month follow-up. The evidence is insufficient to determine the effects of the technology on health outcomes.

MEDICAL POLICY

POLICY TITLE	SURGICAL TREATMENT OF SLEEP APNEA AND SNORING
POLICY NUMBER	MP 1.128

For individuals who have OSA who receive palatal stiffening procedures, the evidence includes two sham-controlled randomized trials. Relevant outcomes are symptoms, functional outcomes, quality of life, and treatment-related morbidity. The 2 RCTs differed in their inclusion criteria, with the study that excluded patients with Friedman tongue position of IV and palate of 3.5 cm or longer reporting greater improvement in AHI (45% success) and snoring (change of -4.7 on a 10-point visual analog scale) than the second trial. Additional studies are needed to corroborate the results of the more successful trial and, if successful, define the appropriate selection criteria. The evidence is insufficient to determine the effects of the technology on health outcomes.

For individuals who have OSA who receive tongue base suspension, the evidence includes a feasibility RCT with 17 patients. Relevant outcomes are symptoms, functional outcomes, quality of life, and treatment-related morbidity. The single RCT compared tongue suspension plus UPPP with tongue advancement plus uvulopalatopharyngoplasty (UPPP) and showed success rates of 50% to 57% for both procedures. Additional RCTs with a larger number of subjects are needed to determine whether tongue suspension alone or added to UPPP improves the net health outcome. The evidence is insufficient to determine that the technology results in an improvement in the net health outcome.

For individuals who have OSA who receive hypoglossal nerve stimulation (HNS), the evidence includes systematic reviews, 3 RCTs, nonrandomized prospective studies, nonrandomized studies with historical controls, and prospective single-arm studies. Relevant outcomes are symptoms, functional outcomes, quality of life, and treatment-related morbidity. A double-blind, multicenter RCT of 89 adults with moderate-to-severe OSA who did not tolerate continuous positive airway pressure (CPAP) found significant short-term improvement in AHI, Epworth Sleepiness Score (ESS), and quality of life measures with HNS compared to sham stimulation. The study was limited by a short duration of follow-up and lack of diversity amongst included participants. Another RCT including 138 patients with moderate-to-severe OSA who did not tolerate CPAP compared outcomes for patients who received HNS therapy at 1 or 4 months after implant for the treatment and control groups, respectively. Results demonstrated significant short-term improvement in AHI and ODI when comparing HNS to no HNS at month 4. However, after 11 months of active therapy, the difference between the treatment and control groups was not statistically significant for AHI, but remained significant for ODI in favor of the treatment group. This trial was also limited by a lack of diverse individuals, as well as a lack of a true control group for long-term outcomes. Hypoglossal nerve stimulation has shown success rates for about two-thirds of a subset of patients who met selection criteria that included AHI, BMI (≤ 32 or ≤ 35 kg/m²), and favorable pattern of palatal collapse across nonrandomized trials. These results were maintained out to 5 years in the pivotal single-arm study. The single prospective comparative study of patients who received HNS versus patients who were denied insurance coverage for the procedure has a high potential for performance bias. For children and adolescents with OSA and Down Syndrome who are unable to tolerate CPAP, the evidence includes a systematic review and a prospective study of 42 individuals. The systematic review investigated HNS in adolescents with Down Syndrome and OSA, and demonstrated significant improvement in AHI and OSA-18 survey scores after HNS. A study of 42 individuals with Down Syndrome and OSA found a success rate of 73.2% with 4 device extrusions corrected with replacement surgery. Limitations of the current evidence base preclude determination of who is

MEDICAL POLICY

POLICY TITLE	SURGICAL TREATMENT OF SLEEP APNEA AND SNORING
POLICY NUMBER	MP 1.128

most likely to benefit from this invasive procedure. The evidence is insufficient to determine that the technology results in an improvement in the net health outcome.

Additional Information

2018 Input

Clinical input was sought to help determine whether the use of hypoglossal nerve stimulation for individuals with obstructive sleep apnea would provide a clinically meaningful improvement in net health outcome and whether the use is consistent with generally accepted medical practice. In response to requests, clinical input was received from 2 respondents, including 1 specialty society-level response and physicians with academic medical center affiliation.

For individuals who have OSA who receive HNS, clinical input supports this use provides a clinically meaningful improvement in net health outcome and indicates this use is consistent with generally accepted medical practice in subgroups of appropriately selected patients. One subgroup includes adult patients with a favorable pattern of non-concentric palatal collapse. The alternative treatment for this anatomical endotype is maxillo-mandibular advancement (MMA), which is associated with greater morbidity and lower patient acceptance than HNS. The improvement in AHI with HNS, as shown in the STAR trial, is similar to the improvement in AHI following MMA. Another subgroup includes appropriately selected adolescents with OSA and Down's syndrome who have difficulty in using CPAP. The following patient selection criteria are based on information from clinical study populations and clinical expert opinion:

- Age \geq 22 years in adults of adolescents with Down's Syndrome age 10 to 21; **and**
- Diagnosed moderate to severe OSA (with less than 25% central apneas); **and**
- CPAP failure or inability to tolerate CPAP; **and**
- Body mass index $\leq 32 \text{ kg/m}^2$ in adults; **and**
- Favorable pattern of palatal collapse.

CSA

For individuals with CSA who receive phrenic nerve stimulation, the evidence includes a systematic review, 1 randomized controlled trial (RCT), and observational studies. Relevant outcomes are change in disease status, functional outcomes, and quality of life. The RCT compared the use of phrenic nerve stimulation to no treatment among patients with CSA of various etiologies. All patients received implantation of the phrenic nerve stimulation system, with activation of the system after 1 month in the intervention group and activation after 6 months in the control group. Activation is delayed 1 month after implantation to allow for lead healing. At 6 months follow-up, the patients with the activated device experienced significant improvements in several sleep metrics and quality of life measures. At 12 months follow-up, patients in the activated device arm showed sustained significant improvements from baseline in sleep metrics and quality of life. A subgroup analysis of patients with heart failure combined 6- and 12-month data from patients in the intervention group and 12- and 18-month data from the control group. Results from this subgroup analysis showed significant improvements in sleep metrics and quality of life at 12 months compared with baseline. Results from observational studies supported the results of the RCT. An invasive procedure would typically

MEDICAL POLICY

POLICY TITLE	SURGICAL TREATMENT OF SLEEP APNEA AND SNORING
POLICY NUMBER	MP 1.128

be considered only if non-surgical treatments had failed, but there is limited data in which phrenic nerve stimulation was evaluated in patients who had failed the current standard of care, positive airway pressure, or respiratory stimulant medication. The evidence is insufficient to determine that the technology results in an improvement in the net health outcome.

DEFINITIONS

AHI is the average number of apneas or hypopneas per hour of sleep

APNEA in adults is defined as a drop in airflow by $\geq 90\%$ of the pre-event baseline for at least ten (10) seconds. Due to faster respiratory rates in children, pediatric scoring criteria define apnea as ≥ 2 missed breaths, regardless of its duration in seconds.

HYPOPNEA in adults is scored when the peak airflow drops by at least 30% of the pre-event baseline for at least 10 seconds in association with either at least 3% or 4% decrease in arterial oxygen desaturation (depending on the scoring criteria) or arousal. Hypopneas in children are scored by a $\geq 50\%$ drop in nasal pressure and either a $\geq 3\%$ decrease in oxygen saturation or associated arousal.

INTRA-ORAL APPLIANCE is a device placed in the mouth to correct or alleviate malocclusion.

PALATOPHARYNGOPLASTY refers to a surgical procedure that opens the airway by removing or reshaping tissue in the throat.

RDI is the number of apneas, hypopneas, or respiratory event-related arousals per hour of sleep time. RDI is often used synonymously with the AHI.

REI is the respiratory event index which is the number of events per hour of monitoring time. Used as an alternative to AHI or RDI in-home sleep studies when actual sleep time from EEG is not available.

DISCLAIMER

Capital Blue Cross' medical policies are used to determine coverage for specific medical technologies, procedures, equipment, and services. These medical policies do not constitute medical advice and are subject to change as required by law or applicable clinical evidence from independent treatment guidelines. Treating providers are solely responsible for medical advice and treatment of members. These policies are not a guarantee of coverage or payment. Payment of claims is subject to a determination regarding the member's benefit program and eligibility on the date of service, and a determination that the services are medically necessary and appropriate. Final processing of a claim is based upon the terms of contract that applies to the members' benefit program, including benefit limitations and exclusions. If a provider or a member has a question concerning this medical policy, please contact Capital Blue Cross' Provider Services or Member Services.

CODING INFORMATION

Note: This list of codes may not be all-inclusive, and codes are subject to change at any time. The identification of a code in this section does not denote coverage as coverage is determined

MEDICAL POLICY

POLICY TITLE	SURGICAL TREATMENT OF SLEEP APNEA AND SNORING							
POLICY NUMBER	MP 1.128							

by the terms of member benefit information. In addition, not all covered services are eligible for separate reimbursement.

Investigational; therefore, not covered: Surgical Treatments for OSA

Procedure Codes								
41512	41530	42299	C9727	S2080				

Investigational; therefore, not covered: Phrenic Nerve Stimulation for Central Sleep Apnea

Procedure Codes								
33276	33277	33278	33279	33280	33281	33287	33288	
93150	93151	93152	93153	C1823				

Covered when medically necessary: Surgical Treatments for OSA

Procedure Codes								
21199	21685	41120	41130	41599	42145	42820	42821	42825
42826	42830	42831	42835	42836	42950	61886	61888	64568*
64582	64583	64584	C1767	C1778				

*Procedure Code 64568 may be used to bill the Inspire V Therapy System

ICD-10-CM Diagnosis Codes:	Description
G47.33	Obstructive sleep apnea (adult) (pediatric)

REFERENCES

OSA

1. Dudley KA, Patel SR. *Disparities and genetic risk factors in obstructive sleep apnea*. *Sleep Med*. Feb 2016; 18: 96-102. PMID 26428843
2. Cohen SM, Howard JJM, Jin MC, et al. *Racial Disparities in Surgical Treatment of Obstructive Sleep Apnea*. *OTO Open*. 2022; 6(1): 2473974X221088870. PMID 35321423
3. Lee YC, Chang KY, Mador MJ. *Racial disparity in sleep apnea-related mortality in the United States*. *Sleep Med*. Feb 2022; 90: 204-213. PMID 35202926
4. Friedman M, Schalch P, Lin HC, et al. *Palatal implants for the treatment of snoring and obstructive sleep apnea/hypopnea syndrome*. *Otolaryngol Head Neck Surg*. Feb 2008; 138(2): 209-16. PMID 18241718
5. Lee LA, Yu JF, Lo YL, et al. *Comparative effects of snoring sound between two minimally invasive surgeries in the treatment of snoring: a randomized controlled trial*. *PLoS One*. 2014; 9(5): e97186. PMID 24816691
6. Patel S, Kon SSC, Nolan CM, et al. *The Epworth Sleepiness Scale: Minimum Clinically Important Difference in Obstructive Sleep Apnea*. *Am J Respir Crit Care Med*. Apr 01 2018; 197(7): 961-963. PMID 28961021

MEDICAL POLICY

POLICY TITLE	SURGICAL TREATMENT OF SLEEP APNEA AND SNORING
POLICY NUMBER	MP 1.128

7. Ferguson KA, Heighway K, Ruby RR. A randomized trial of laser-assisted uvulopalatoplasty in the treatment of mild obstructive sleep apnea. *Am J Respir Crit Care Med.* Jan 01 2003; 167(1): 15-9. PMID 12502473
8. Bäck LJ, Liukko T, Rantanen I, et al. Radiofrequency surgery of the soft palate in the treatment of mild obstructive sleep apnea is not effective as a single-stage procedure: A randomized single-blinded placebo-controlled trial. *Laryngoscope.* Aug 2009; 119(8): 1621-7. PMID 19504550
9. Woodson BT, Steward DL, Weaver EM, et al. A randomized trial of temperature-controlled radiofrequency, continuous positive airway pressure, and placebo for obstructive sleep apnea syndrome. *Otolaryngol Head Neck Surg.* Jun 2003; 128(6): 848-61. PMID 12825037
10. Herman H, Stern J, Alessi DM, et al. Office-Based Multilevel Radiofrequency Ablation for Mild-to-Moderate Obstructive Sleep Apnea. *OTO Open.* 2023; 7(1): e19. PMID 36998558
11. Steward DL, Huntley TC, Woodson BT, et al. Palate implants for obstructive sleep apnea: multi-institution, randomized, placebo-controlled study. *Otolaryngol Head Neck Surg.* Oct 2008; 139(4): 506-10. PMID 18922335
12. Neruntarat C. Long-term results of palatal implants for obstructive sleep apnea. *Eur Arch Otorhinolaryngol.* Jul 2011; 268(7): 1077-80. PMID 21298386
13. Maurer JT, Sommer JU, Hein G, et al. Palatal implants in the treatment of obstructive sleep apnea: a randomised, placebo-controlled single-centre trial. *Eur Arch Otorhinolaryngol.* Jul 2012; 269(7): 1851-6. PMID 22228439
14. Thomas AJ, Chavoya M, Terris DJ. Preliminary findings from a prospective, randomized trial of two tongue-base surgeries for sleep-disordered breathing. *Otolaryngol Head Neck Surg.* Nov 2003; 129(5): 539-46. PMID 14595277
15. Costantino A, Rinaldi V, Moffa A, et al. Hypoglossal nerve stimulation long-term clinical outcomes: a systematic review and meta-analysis. *Sleep Breath.* Jun 2020; 24(2): 399-411. PMID 31418162
16. Steffen A, Sommer JU, Hofauer B, et al. Outcome after one year of upper airway stimulation for obstructive sleep apnea in a multicenter German post-market study. *Laryngoscope.* Feb 2018; 128(2): 509-515. PMID 28561345
17. Steffen A, Sommer UJ, Maurer JT, et al. Long-term follow-up of the German post-market study for upper airway stimulation for obstructive sleep apnea. *Sleep Breath.* Sep 2020; 24(3): 979-984. PMID 31485853
18. Strollo PJ, Soose RJ, Maurer JT, et al. Upper-airway stimulation for obstructive sleep apnea. *N Engl J Med.* Jan 09 2014; 370(2): 139-49. PMID 24401051
19. Strollo PJ, Gillespie MB, Soose RJ, et al. Upper Airway Stimulation for Obstructive Sleep Apnea: Durability of the Treatment Effect at 18 Months. *Sleep.* Oct 01 2015; 38(10): 1593-8. PMID 26158895
20. Woodson BT, Strohl KP, Soose RJ, et al. Upper Airway Stimulation for Obstructive Sleep Apnea: 5-Year Outcomes. *Otolaryngol Head Neck Surg.* Jul 2018; 159(1): 194-202. PMID 29582703
21. Kim DH, Kim SW, Han JS, et al. Comparative effectiveness of hypoglossal nerve stimulation and alternative treatments for obstructive sleep apnea: a systematic review and meta-analysis. *J Sleep Res.* May 2024; 33(3): e14017. PMID 37661785

MEDICAL POLICY

POLICY TITLE	SURGICAL TREATMENT OF SLEEP APNEA AND SNORING
POLICY NUMBER	MP 1.128

22. Alrubasy WA, Abuawwad MT, Taha MJJ, et al. Hypoglossal nerve stimulation for obstructive sleep apnea in adults: An updated systematic review and meta-analysis. *Respir Med.* 2024; 234: 107826. PMID 39401661
23. Wollny M, Heiser C, Sommer U, et al. Adverse Events with Hypoglossal Nerve Stimulation in the Treatment of Obstructive Sleep Apnea-A Systematic Review of Clinical Trials and Real-World Data. *J Clin Med.* Jul 23 2024; 13(15). PMID 39124549
24. Schwartz AR, Jacobowitz O, Eisele DW, et al. Targeted Hypoglossal Nerve Stimulation for Patients With Obstructive Sleep Apnea: A Randomized Clinical Trial. *JAMA Otolaryngol Head Neck Surg.* Jun 01 2023; 149(6): 512-520. PMID 37022679
25. Heiser C, Steffen A, Hofauer B, et al. Effect of Upper Airway Stimulation in Patients with Obstructive Sleep Apnea (EFFECT): A Randomized Controlled Crossover Trial. *J Clin Med.* Jun 29 2021; 10(13). PMID 34209581
26. Dedhia RC, Bliwise DL, Quyyumi AA, et al. Hypoglossal Nerve Stimulation and Cardiovascular Outcomes for Patients With Obstructive Sleep Apnea: A Randomized Clinical Trial. *JAMA Otolaryngol Head Neck Surg.* Jan 01 2024; 150(1): 39-48. PMID 38032624
27. Yu JL, Mahmoud A, Thaler ER. Transoral robotic surgery versus upper airway stimulation in select obstructive sleep apnea patients. *Laryngoscope.* Jan 2019; 129(1): 256-258. PMID 30208225
28. Huntley C, Boon M, Tschoopp S, et al. Comparison of Traditional Upper Airway Surgery and Upper Airway Stimulation for Obstructive Sleep Apnea. *Ann Otol Rhinol Laryngol.* Apr 2021; 130(4): 370-376. PMID 32862654
29. Mehra R, Steffen A, Heiser C, et al. Upper Airway Stimulation versus Untreated Comparators in Positive Airway Pressure Treatment-Refractory Obstructive Sleep Apnea. *Ann Am Thorac Soc.* Dec 2020; 17(12): 1610-1619. PMID 32663043
30. Shah J, Russell JO, Waters T, et al. Uvulopalatopharyngoplasty vs CN XII stimulation for treatment of obstructive sleep apnea: A single institution experience. *Am J Otolaryngol.* 2018; 39(3): 266-270. PMID 29540289
31. Huntley C, Chou DW, Doghramji K, et al. Comparing Upper Airway Stimulation to Expansion Sphincter Pharyngoplasty: A Single University Experience. *Ann Otol Rhinol Laryngol.* Jun 2018; 127(6): 379-383. PMID 29707958
32. Woodson BT, Soose RJ, Gillespie MB, et al. Three-Year Outcomes of Cranial Nerve Stimulation for Obstructive Sleep Apnea: The STAR Trial. *Otolaryngol Head Neck Surg.* Jan 2016; 154(1): 181-8. PMID 26577774
33. Soose RJ, Woodson BT, Gillespie MB, et al. Upper Airway Stimulation for Obstructive Sleep Apnea: Self-Reported Outcomes at 24 Months. *J Clin Sleep Med.* Jan 2016; 12(1): 43-8. PMID 26235158
34. Woodson BT, Gillespie MB, Soose RJ, et al. Randomized controlled withdrawal study of upper airway stimulation on OSA: short- and long-term effect. *Otolaryngol Head Neck Surg.* Nov 2014; 151(5): 880-7. PMID 25205641
35. Kezirian EJ, Goding GS, Malhotra A, et al. Hypoglossal nerve stimulation improves obstructive sleep apnea: 12-month outcomes. *J Sleep Res.* Feb 2014; 23(1): 77-83. PMID 24033656
36. Gillespie MB, Soose RJ, Woodson BT, et al. Upper Airway Stimulation for Obstructive Sleep Apnea: Patient-Reported Outcomes after 48 Months of Follow-up. *Otolaryngol Head Neck Surg.* Apr 2017; 156(4): 765-771. PMID 28194999

MEDICAL POLICY

POLICY TITLE	SURGICAL TREATMENT OF SLEEP APNEA AND SNORING
POLICY NUMBER	MP 1.128

37. Heiser C, Maurer JT, Hofauer B, et al. Outcomes of Upper Airway Stimulation for Obstructive Sleep Apnea in a Multicenter German Postmarket Study. *Otolaryngol Head Neck Surg.* Feb 2017; 156(2): 378-384. PMID 28025918
38. Hasselbacher K, Hofauer B, Maurer JT, et al. Patient-reported outcome: results of the multicenter German post-market study. *Eur Arch Otorhinolaryngol.* Jul 2018; 275(7): 1913-1919. PMID 29808422
39. Liu P, Kong W, Fang C, et al. Hypoglossal nerve stimulation in adolescents with down syndrome and obstructive sleep apnea: A systematic review and meta-analysis. *Front Neurol.* 2022; 13: 1037926. PMID 36388229
40. Yu PK, Stenerson M, Ishman SL, et al. Evaluation of Upper Airway Stimulation for Adolescents With Down Syndrome and Obstructive Sleep Apnea. *JAMA Otolaryngol Head Neck Surg.* Jun 01 2022; 148(6): 522-528. PMID 35446411
41. Boon M, Huntley C, Steffen A, et al. Upper Airway Stimulation for Obstructive Sleep Apnea: Results from the ADHERE Registry. *Otolaryngol Head Neck Surg.* Aug 2018; 159(2): 379-385. PMID 29557280
42. Kent DT, Carden KA, Wang L, et al. Evaluation of Hypoglossal Nerve Stimulation Treatment in Obstructive Sleep Apnea. *JAMA Otolaryngol Head Neck Surg.* Nov 01 2019; 145(11): 1044-1052. PMID 31556927
43. Thaler E, Schwab R, Maurer J, et al. Results of the ADHERE upper airway stimulation registry and predictors of therapy efficacy. *Laryngoscope.* May 2020; 130(5): 1333-1338. PMID 31520484
44. Suurna MV, Steffen A, Boon M, et al. Impact of Body Mass Index and Discomfort on Upper Airway Stimulation: ADHERE Registry 2020 Update. *Laryngoscope.* Nov 2021; 131(11): 2616-2624. PMID 34626128
45. Huntley C, Steffen A, Doghramji K, et al. Upper Airway Stimulation in Patients With Obstructive Sleep Apnea and an Elevated Body Mass Index: A Multi-institutional Review. *Laryngoscope.* Oct 2018; 128(10): 2425-2428. PMID 30098035
46. Patel RM, Wang HZ, Jamro EL, et al. Response to Hypoglossal Nerve Stimulation Changes With Body Mass Index and Supine Sleep. *JAMA Otolaryngol Head Neck Surg.* May 01 2024; 150(5): 421-428. PMID 38573632
47. Kent D, Stanley J, Aurora RN, et al. Referral of adults with obstructive sleep apnea for surgical consultation: an American Academy of Sleep Medicine clinical practice guideline. *J Clin Sleep Med.* Dec 01 2021; 17(12): 2499-2505. PMID 34351848
48. Aurora RN, Casey KR, Kristo D, et al. Practice parameters for the surgical modifications of the upper airway for obstructive sleep apnea in adults. *Sleep.* Oct 2010; 33(10): 1408-13. PMID 21061864
49. Kent D, Stanley J, Aurora RN, et al. Referral of adults with obstructive sleep apnea for surgical consultation: an American Academy of Sleep Medicine systematic review, meta-analysis, and GRADE assessment. *J Clin Sleep Med.* Dec 01 2021; 17(12): 2507-2531. PMID 34351849
50. Marcus CL, Brooks LJ, Draper KA, et al. Diagnosis and management of childhood obstructive sleep apnea syndrome. *Pediatrics.* Sep 2012; 130(3): e714-55. PMID 22926176
51. American Academy of Otolaryngology -- Head and Neck Surgery. Position Statement: Surgical Management of Obstructive Sleep Apnea. 2021;

MEDICAL POLICY

POLICY TITLE	SURGICAL TREATMENT OF SLEEP APNEA AND SNORING
POLICY NUMBER	MP 1.128

<https://www.entnet.org/resource/position-statement-surgical-management-of-obstructive-sleep-apnea/>. Accessed April 14, 2025.

52. American Academy of Otolaryngology-Head and Neck Surgery. 2021 Position Statement: Hypoglossal Nerve Stimulation for Treatment of Obstructive Sleep Apnea (OSA) <https://www.entnet.org/resource/position-statement-hypoglossal-nerve-stimulation-for-treatment-of-obstructive-sleep-apnea-osa/>. Accessed April 13, 2025.

53. Clinical Issues Committee, American Society for Metabolic & Bariatric Surgery. Peri-operative management of obstructive sleep apnea. 2012; <https://asmbs.org/resources/peri-operative-management-of-obstructive-sleep-apnea>. Accessed April 14, 2025.

54. de Raaff CAL, Gorter-Stam MAW, de Vries N, et al. Perioperative management of obstructive sleep apnea in bariatric surgery: a consensus guideline. *Surg Obes Relat Dis.* Jul 2017; 13(7): 1095-1109. PMID 28666588

55. National Institute for Health and Care Excellence. Hypoglossal nerve stimulation for moderate to severe obstructive sleep apnoea (IPG598). 2017. <https://www.nice.org.uk/guidance/ipg598/chapter/1-Recommendations>. Accessed April 14, 2025.

56. Centers for Medicare & Medicaid Services. Decision Memo for Continuous Positive Airway Pressure (CPAP) Therapy for Obstructive Sleep Apnea (OSA) (CAG-00093N). 2008; <https://www.cms.gov/medicare-coverage-database/view/ncd.aspx?ncdid=226&ncdver=3&keyword=osa&keywordType=starts&areald=all&docType=NCA,CAL,NCD,MEDCAC,TA,MCD&contractOption=all&sortBy=relevance&bc=1>. Accessed April 14, 2025.

CSA

1. Donovan LM, Kapur VK. Prevalence and Characteristics of Central Compared to Obstructive Sleep Apnea: Analyses from the Sleep Heart Health Study Cohort. *Sleep.* Jul 01 2016; 39(7): 1353-9. PMID 27166235
2. Cowie MR, Woehrle H, Wegscheider K, et al. Adaptive Servo-Ventilation for Central Sleep Apnea in Systolic Heart Failure. *N Engl J Med.* Sep 17 2015; 373(12): 1095-105. PMID 26323938
3. Wang Y, Huang Y, Xia M, et al. Effect of phrenic nerve stimulation on patients with central sleep apnea: A meta-analysis. *Sleep Med Rev.* Aug 2023; 70: 101819. PMID 37467524
4. Costanzo MR, Javaheri S, Ponikowski P, et al. Transvenous Phrenic Nerve Stimulation for Treatment of Central Sleep Apnea: Five-Year Safety and Efficacy Outcomes. *Nat Sci Sleep.* 2021; 13: 515-526. PMID 33953626
5. Oldenburg O, Costanzo MR, Germany R, et al. Improving Nocturnal Hypoxemic Burden with Transvenous Phrenic Nerve Stimulation for the Treatment of Central Sleep Apnea. *J Cardiovasc Transl Res.* Apr 2021; 14(2): 377-385. PMID 32789619
6. Costanzo MR, Goldberg LR, Ponikowski P, Augostini R, Stellbrink C, Abraham W. Phrenic nerve stimulation for central sleep apnea is effective and safe in the presence of concomitant cardiac devices. *J Card Fail.* Aug 2018; 24(8):S17-8.

MEDICAL POLICY

POLICY TITLE	SURGICAL TREATMENT OF SLEEP APNEA AND SNORING
POLICY NUMBER	MP 1.128

7. Zhang X, Ding N, Ni B, et al. Safety and feasibility of chronic transvenous phrenic nerve stimulation for treatment of central sleep apnea in heart failure patients. *Clin Respir J.* Mar 2017; 11(2): 176-184. PMID 26072733
8. Fox H, Bitter T, Horstkotte D, et al. Long-Term Experience with First-Generation Implantable Neurostimulation Device in Central Sleep Apnea Treatment. *Pacing Clin Electrophysiol.* May 2017; 40(5): 498-503. PMID 28211952
9. Jagielski D, Ponikowski P, Augostini R, et al. Transvenous stimulation of the phrenic nerve for the treatment of central sleep apnoea: 12 months' experience with the remedē ® System. *Eur J Heart Fail.* Nov 2016; 18(11): 1386-1393. PMID 27373452
10. Costanzo MR, Ponikowski P, Javaheri S, et al. Transvenous neurostimulation for central sleep apnoea: a randomised controlled trial. *Lancet.* Sep 03 2016; 388(10048): 974-82. PMID 27598679
11. Abraham WT, Jagielski D, Oldenburg O, et al. Phrenic nerve stimulation for the treatment of central sleep apnea. *JACC Heart Fail.* May 2015; 3(5): 360-369. PMID 25770408
12. Ponikowski P, Javaheri S, Michalkiewicz D, et al. Transvenous phrenic nerve stimulation for the treatment of central sleep apnoea in heart failure. *Eur Heart J.* Apr 2012; 33(7): 889-94. PMID 21856678
13. Zhang XL, Ding N, Wang H, et al. Transvenous phrenic nerve stimulation in patients with Cheyne-Stokes respiration and congestive heart failure: a safety and proof-of-concept study. *Chest.* Oct 2012; 142(4): 927-934. PMID 22302299
14. Costanzo MR, Augostini R, Goldberg LR, et al. Design of the remedē System Pivotal Trial: A Prospective, Randomized Study in the Use of Respiratory Rhythm Management to Treat Central Sleep Apnea. *J Card Fail.* Nov 2015; 21(11): 892-902. PMID 26432647
15. Costanzo MR, Ponikowski P, Javaheri S, et al. Sustained 12 Month Benefit of Phrenic Nerve Stimulation for Central Sleep Apnea. *Am J Cardiol.* Jun 01 2018; 121(11): 1400-1408. PMID 29735217
16. Fox H, Oldenburg O, Javaheri S, et al. Long-term efficacy and safety of phrenic nerve stimulation for the treatment of central sleep apnea. *Sleep.* Oct 21 2019; 42(11). PMID 31634407
17. Baumert M, Immanuel S, McKane S, et al. Transvenous phrenic nerve stimulation for the treatment of central sleep apnea reduces episodic hypoxic burden. *Int J Cardiol.* May 01 2023; 378: 89-95. PMID 36841294
18. Baumert M, Linz D, McKane S, et al. Transvenous phrenic nerve stimulation is associated with normalization of nocturnal heart rate perturbations in patients with central sleep apnea. *Sleep.* Sep 08 2023; 46(9). PMID 37284759
19. Hartmann S, Immanuel S, McKane S, et al. Transvenous phrenic nerve stimulation for treating central sleep apnea may regulate sleep microstructure. *Sleep Med.* Jan 2024; 113: 70-75. PMID 37988861
20. Samii S, McKane S, Meyer TE, et al. Analysis by sex of safety and effectiveness of transvenous phrenic nerve stimulation. *Sleep Breath.* Mar 2024; 28(1): 165-171. PMID 37436669
21. Abraham WT, Oldenburg O, Lainscak M, et al. Win ratio analysis of transvenous phrenic nerve stimulation to treat central sleep apnoea in heart failure. *ESC Heart Fail.* Feb 2025; 12(1): 80-86. PMID 39422417

MEDICAL POLICY

POLICY TITLE	SURGICAL TREATMENT OF SLEEP APNEA AND SNORING
POLICY NUMBER	MP 1.128

22. Costanzo MR, Ponikowski P, Coats A, et al. *Phrenic nerve stimulation to treat patients with central sleep apnoea and heart failure*. Eur J Heart Fail. Dec 2018; 20(12): 1746-1754. PMID 30303611
23. Hill L, Meyer T, McKane S, et al. *Transvenous phrenic nerve stimulation to treat central sleep apnoea in patients with heart failure may improve sleep, quality of life, and symptoms*. Eur J Cardiovasc Nurs. Jul 19 2023; 22(5): 489-497. PMID 36125322
24. Wang Y, Schoebel J, Han J, et al. *Phrenic nerve stimulation for the treatment of central sleep apnea in patients with heart failure*. Sleep Breath. Jun 2023; 27(3): 1027-1032. PMID 35978055
25. Aurora RN, Chowdhuri S, Ramar K, et al. *The treatment of central sleep apnea syndromes in adults: practice parameters with an evidence-based literature review and meta-analyses*. Sleep. Jan 01 2012; 35(1): 17-40. PMID 22215916
26. Aurora RN, Bista SR, Casey KR, et al. *Updated Adaptive Servo-Ventilation Recommendations for the 2012 AASM Guideline: "The Treatment of Central Sleep Apnea Syndromes in Adults: Practice Parameters with an Evidence-Based Literature Review and Meta-Analyses"*. J Clin Sleep Med. May 15 2016; 12(5): 757-61. PMID 27092695
27. Abraham WT, Oldenburg O, Lainscak M, et al. *Win ratio analysis of transvenous phrenic nerve stimulation to treat central sleep apnoea in heart failure*. ESC Heart Fail. Feb 2025; 12(1): 80-86. PMID 39422417

POLICY HISTORY

MP 1.128	<p>02/27/2020 Minor Review. The indication for hypoglossal nerve stimulation changed to apnea/hypopnea index of ≥ 15 for alignment with the Food and Drug Administration-approved indication. Edits were also made to the Policy section regarding signs and symptoms in mild OSA to align with MP 2.045 Diagnosis and Medical Management of Obstructive Sleep Apnea. Policy guidelines and references updated. Coding reviewed.</p> <p>03/16/2021 Minor Review. Removal of the defined OSA section in for Adenotonsillectomy. Removal of UARS criteria.</p> <p>12/01/2021 Administrative Update. Added codes 42975, 64582-64584. Deleted codes 0466T-0468T</p> <p>05/24/2022 Administrative Update. 42975 moved from INV to MN</p> <p>12/07/2022 Consensus Review. Clarification to INV statement, no change to intent. Updated references and rationale. Coding reviewed.</p> <p>09/14/2023 Minor Review. Adults: now allow for adenotonsillectomy, adenoidectomy, tonsillectomy, lingual tonsillectomy, tongue-based suspension, and tracheostomy; for hypoglossal nerve stimulation, allow for 18 and older and raised BMI index up to 40. Clinically significant definition of OSA moved to policy guidelines. Pediatrics: now allow for tonsillectomy, adenoidectomy, lingual tonsillectomy, UPPP, maxillomandibular advancement, and tracheostomy; for hypoglossal nerve stimulation, age now 10-18 and raised BMI index to 40. Reformatting for snoring statement (now in both sections and included in "other procedures"). Updated policy guidelines, background, rationale, definitions, and</p>
----------	---

MEDICAL POLICY

POLICY TITLE	SURGICAL TREATMENT OF SLEEP APNEA AND SNORING
POLICY NUMBER	MP 1.128

<p>references. To coding table deleted all ICD-10 codes except G47.33 as OSA is the driving factor for these procedures. Procedure Code 41512 is now MN. Added procedure codes 21299, 31600-01, 41120, 41130, 42830-31, 42835-36, 42870, and 42950.</p> <p>08/13/2024 Minor Review. To adult HNS, added \leq 100 AHI. To pediatric HNS, modified lower age limit to 13 and modified BMI language to percentile for age to be consistent with pediatrics terminology. Updated background, definitions, and references. No changes to coding.</p> <p>01/22/2025 Minor Review. Title change. Phrenic nerve stimulation for CSA as INV has been added to the policy along with associated coding. Change in criteria and formatting to OSA statements. Procedure code 41512 has been moved to non-covered coding table. Procedure codes 21299, 31600, 31601, 42870, 42975, and E1399 have been removed from the policy. Policy guidelines, background, rationale, coding table, and references have all been updated.</p> <p>06/25/2025 Administrative Update. Removed Benefit Variations Section and updated Disclaimer.</p> <p>09/30/2025 Consensus Review. Updated cross-references, background, rationale, and references. Added 4 codes to the MN coding table.</p>

Health care benefit programs issued or administered by Capital Blue Cross and/or its subsidiaries, Capital Advantage Insurance Company®, Capital Advantage Assurance Company®, and Keystone Health Plan® Central. Independent licensees of the Blue Cross BlueShield Association. Communications issued by Capital Blue Cross in its capacity as administrator of programs and provider relations for all companies.