

POLICY NUMBER MP 5.011	POLICY TITLE	MAGNETOENCEPHALOGRAPHY /MAGNETIC SOURCE IMAGING
	POLICY NUMBER	MP 5.011

Effective Date:

5/1/2023

POLICY RATIONALE DISCLAIMER POLICY HISTORY PRODUCT VARIATIONS DEFINITIONS CODING INFORMATION DESCRIPTION/BACKGROUND BENEFIT VARIATIONS REFERENCES

I. POLICY

Magnetoencephalography/magnetic source imaging as part of the preoperative evaluation of patients with intractable epilepsy (seizures refractory to at least two first-line anticonvulsants) may be considered **medically necessary** when standard techniques, such as MRI and EEG, do not provide satisfactory localization of epileptic lesion(s).

Magnetoencephalography/magnetic source imaging for the purpose of determining the laterality of language function, as a substitute for the Wada test, in patients being prepared for surgery for epilepsy, brain tumors, and other indications requiring brain resection, may be considered **medically necessary**.

Magnetoencephalography /magnetic source imaging is considered **investigational** for all other indications. There is insufficient evidence to support a conclusion concerning the health outcomes or benefits associated with these procedures.

II. PRODUCT VARIATIONS

This policy is only applicable to certain programs and products administered by Capital Blue Cross and subject to benefit variations as discussed in Section VI. Please see additional information below.

III. DESCRIPTION/BACKGROUND

MAGNETOENCEPHALOGRAPHY

Magnetoencephalography (MEG) is a noninvasive functional imaging technique that records weak magnetic forces associated with brain electrical activity. Using mathematical modeling, recorded data are then analyzed to provide an estimated location of electrical activity. This information can be superimposed on an anatomic image of the brain, typically a magnetic resonance imaging (MRI) scan, to produce a functional/anatomic image of the brain, referred to as magnetic source imaging (MSI). The primary advantage of MSI is that, while conductivity and thus a measurement of electrical activity as recorded by electroencephalogram is altered by surrounding brain structures, magnetic fields are not. Therefore, MSI permits a high-resolution image.

Detection of weak magnetic fields requires gradiometer detection coils coupled to a superconducting quantum interference device, which requires a specialized room shielded from other magnetic sources. Mathematical modeling programs based on idealized assumptions are then used to translate detected signals into functional images. In its early

TOP

TOP

POLICY TITLE	MAGNETOENCEPHALOGRAPHY /MAGNETIC SOURCE IMAGING
POLICY NUMBER	MP 5.011

evolution, clinical applications were limited by the use of only one detection coil requiring lengthy imaging times, which, because of body movement, also were difficult to match with the MRI. However, more recently, the technique has evolved to multiple detection coils in an array that can provide data more efficiently over a wide extracranial region.

Applications

One clinical application is localization of epileptic foci, particularly for the screening of surgical candidates and surgical planning. Alternative techniques include MRI, positron emission tomography (PET), or single photon emission computed tomography scanning. Anatomic imaging (i.e., MRI) is effective when epilepsy is associated with a mass lesion, such as a tumor, vascular malformation, or hippocampal atrophy. If an anatomic abnormality is not detected, patients may undergo a PET scan. In a small subset of patients, extended electrocorticography (ECoG) or stereotactic electroencephalography with implanted electrodes is considered the criterion standard for localizing epileptogenic foci. MEG/MSI has principally been investigated as a supplement to or an alternative to invasive monitoring.

Another clinical application is localization of the pre- and postcentral gyri as a guide to surgical planning in patients scheduled to undergo neurosurgery for epilepsy, brain neoplasms, arteriovenous malformations, or other brain disorders. These gyri contain the "eloquent" sensorimotor areas of the brain, the preservation of which is considered critical during any type of brain surgery. In normal situations, these areas can be identified anatomically by MRI, but frequently, anatomy is distorted by underlying disease processes. In addition, location of eloquent functions varies, even among healthy people. Therefore, localization of the eloquent cortex often requires such intraoperative invasive functional techniques as cortical stimulation with the patient under local anesthesia or somatosensory-evoked responses on ECoG. Although these techniques can be done at the same time as the planned resection, they are cumbersome and can add up to 45 minutes of anesthesia time. Furthermore, these techniques can sometimes be limited by the small surgical field. A preoperative test, which is often used to localize the eloquent hemisphere, is the Wada test. MEG/MSI has been proposed as a substitute for the Wada test.

REGULATORY STATUS

The U.S. Food and Drug Administration (FDA) regulates MEG devices as class II devices cleared for marketing through the 510(k) process. The Food and Drug Administration product codes OLX and OXY are used to identify the different components of the devices. OLX coded devices are source localization software for electroencephalography or magnetoencephalography; the software correlates electrical activity of the brain using various neuroimaging modalities. This code does not include electrodes, amplitude-integrated electroencephalograph, automatic event-detection software used as the only or final electroencephalograph analysis step, electroencephalography software with comparative databases (normal or otherwise), or electroencephalography software that outputs an index, diagnosis, or classification.

POLICY TITLE	MAGNETOENCEPHALOGRAPHY /MAGNETIC SOURCE IMAGING
POLICY NUMBER	MP 5.011

OLY-coded devices are magnetoencephalographs that acquire, display, store, and archive biomagnetic signals produced by electrically active nerve tissue in the brain to provide information about the location of active nerve tissue responsible for certain brain functions relative to brain anatomy. This includes the magnetoencephalograph recording device (hardware, basic software).

The intended use of these devices is to "non-invasively detect and display biomagnetic signals produced by electrically active nerve tissue in the brain. When interpreted by a trained clinician, the data enhance the diagnostic capability by providing useful information about the location relative to brain anatomy of active nerve tissue responsible for critical brain functions."¹ More recent approval summaries add: "MEG is routinely used to identify the locations of visual, auditory, somatosensory, and motor cortex in the brain when used in conjunction with evoked response averaging devices. MEG is also used to noninvasively locate regions of epileptic activity within the brain. The localization information provided by MEG may be used, in conjunction with other diagnostic data, in neurosurgical planning."¹

The MagView Biomagnetometer System (Tristan Technologies) has the unique intended use for patient populations who are neonates and infants and those children with head circumferences of 50 cm or less.²

MEG devices (hardware, software) are summarized in Table 1.

Device	Manufacturer	Date Cleared	510(k) No.
Neuromagneometer	Biomagnetic Technologies	Feb 1986	K854466
700 Series Biomagnetometer	Biomagnetic Technologies	Jun 1990	K901215
Neuromag-122	Philips Medical Systems	Oct 1996	K962764
Magnes 2500 Wh Biomagnetometer	Biomagnetic Technologies	May 1997	K962317
CTF Systems, Whole- Cortex Meg System	CTF Systems	Nov 1997	K971329
Magnes II Biomagnetometer	Biomagnetic Technologies	May 1998	K941553
Image Vue EEG	Sam Technology	Aug 1988	K980477
Electroencephalograph Software eemagine	eemagine Medical Imaging Solutions	Oct 2000	K002631
Curry Multimodal Neuroimaging Software	Neurosoft	Feb 2001	K001781
Neurosoft's Source	Neurosoft	Sep 2001	K011241
Megvision Model Eq1000c Series	Eagle Technology	Mar 2004	K040051

Table 1. Magnetoencephalography Devices Cleared by FDA (Product Codes OLX and OLY)

POLICY TITLE	MAGNETOENCEPHALOGRAPHY /MAGNETIC SOURCE IMAGING
POLICY NUMBER	MP 5.011

Elekta Oy	Elekta Neuromag Oy	Aug 2004	K041264
MaxInsight	eemagine Medical Imaging Solutions	Jul 2007	K070358
Elekta Neuromag With Maxfilter	Elekta Neuromag Oy	Oct 2010	K091393
Geosource	Electrical Geodesics	Dec 2010	K092844
Babymeg Biomagnetometer System (also called Artemis 123 Biomagnetometer)	Tristan Technologies	Jul 2014	K133419
MagView Biomagnetometer System	Tristan Technologies	Apr 2016	K152184
Orion Lifespan Meg	Compumedics Limited	Feb 2020	K191785

EEG: electroencephalogram; FDA: Food and Drug Administration.

In 2000, Biomagnetic Technologies acquired Neuromag and began doing business as 4-D NeuroImaging. The latter company ceased operations in 2009.

IV. RATIONALE

TOP

TOP

SUMMARY OF EVIDENCE

For individuals who have drug-resistant epilepsy and are being evaluated for possible resective surgery who receive MEG/MSI, the evidence for MEG/MSI as an adjunct to standard clinical workup includes various types of case series. The relevant outcomes are test accuracy and clinical utility. Published evidence on MEG is suboptimal, with no clinical trials demonstrating clinical utility. The literature on diagnostic accuracy has methodologic limitations, primarily selection and ascertainment bias. Studies of functional outcomes do not fully account for the effects of MEG, because subjects who received MEG were not fully accounted for in the studies. The evidence is insufficient to determine the effects of the technology on health outcomes.

For individuals who have a planned brain resection who require localization of eloquent function areas who receive MEG/MSI, the evidence includes comparative studies. The relevant outcomes include test accuracy and clinical utility. Available studies have reported that this test has high concordance with the Wada test, which is currently the main alternative to localize eloquent functions. While management is changed in some patients based on MEG testing, it has not been demonstrated that these changes lead to improved outcomes. The evidence is insufficient to determine the effects of the technology on health outcomes.

V. DEFINITIONS

GYRI refer to one of the convolutions of the cerebral hemispheres of the brain.

POLICY TITLE	MAGNETOENCEPHALOGRAPHY /MAGNETIC SOURCE IMAGING
POLICY NUMBER	MP 5.011

MAGNETIC RESONANCE IMAGING is a type of diagnostic imaging that uses the characteristic behavior of protons (and other atomic nuclei) when placed in powerful magnetic fields to make images of tissues and organs.

NONINVASIVE refers to a device or procedure that does not penetrate the skin or enter any orifice in the body.

VI. BENEFIT VARIATIONS

The existence of this medical policy does not mean that this service is a covered benefit under the member's health benefit plan. Benefit determinations should be based in all cases on the applicable health benefit plan language. Medical policies do not constitute a description of benefits. A member's health benefit plan governs which services are covered, which are excluded, which are subject to benefit limits and which require preauthorization. There are different benefit plan designs in each product administered by Capital Blue Cross. Members and providers should consult the member's health benefit plan for information or contact Capital Blue Cross for benefit information.

VII. DISCLAIMER

Capital Blue Cross's medical policies are developed to assist in administering a member's benefits, do not constitute medical advice and are subject to change. Treating providers are solely responsible for medical advice and treatment of members. Members should discuss any medical policy related to their coverage or condition with their provider and consult their benefit information to determine if the service is covered. If there is a discrepancy between this medical policy and a member's benefit information, the benefit information will govern. If a provider or a member has a question concerning the application of this medical policy to a specific member's plan of benefits, please contact Capital Blue Cross' Provider Services or Member Services. Capital Blue Cross considers the information contained in this medical policy to be proprietary and it may only be disseminated as permitted by law.

VIII. CODING INFORMATION

Note: This list of codes may not be all-inclusive, and codes are subject to change at any time. The identification of a code in this section does not denote coverage as coverage is determined by the terms of member benefit information. In addition, not all covered services are eligible for separate reimbursement

Covered when medically necessary:

Procedure Codes								
95965	95966	95967	S8035					
Current Procedural Terminology (CPT) copyrighted by American Medical Association. All								
Rights Reserved.								

TOP

Тор

TOP

POLICY TITLE	MAGNETOENCEPHALOGRAPHY /MAGNETIC SOURCE IMAGING
POLICY NUMBER	MP 5.011

ICD-10- CM Diagnosi s Code	Description
C71.0	Malignant neoplasm of cerebrum, except lobes and ventricles
C71.1	Malignant neoplasm of frontal lobe
C71.2	Malignant neoplasm of temporal lobe
C71.3	Malignant neoplasm of parietal lobe
C71.4	Malignant neoplasm of occipital lobe
C71.5	Malignant neoplasm of cerebral ventricle
C71.6	Malignant neoplasm of cerebellum
C71.7	Malignant neoplasm of brain stem
C71.8	Malignant neoplasm of overlapping sites of brain
C71.9	Malignant neoplasm of brain, unspecified
C79.31	Secondary malignant neoplasm of brain
D33.0	Benign neoplasm of brain, supratentorial
D33.1	Benign neoplasm of brain, infratentorial
D33.2	Benign neoplasm of brain, unspecified
D43.0	Neoplasm of uncertain behavior of brain, supratentorial
D43.1	Neoplasm of uncertain behavior of brain, infratentorial
D43.2	Neoplasm of uncertain behavior of brain, unspecified
G40.001	Localization-related (focal) (partial) idiopathic epilepsy and epileptic syndromes with seizures of localized onset, not intractable, with status epilepticus
G40.009	Localization-related (focal) (partial) idiopathic epilepsy and epileptic syndromes with seizures of localized onset, not intractable, without status epilepticus
G40.011	Localization-related (focal) (partial) idiopathic epilepsy and epileptic syndromes with seizures of localized onset, intractable, with status epilepticus
G40.019	Localization-related (focal) (partial) idiopathic epilepsy and epileptic syndromes with seizures of localized onset, intractable, without status epilepticus
G40.101	Localization-related (focal) (partial) symptomatic epilepsy and epileptic syndromes with simple partial seizures, not intractable, with status epilepticus
G40.109	Localization-related (focal) (partial) symptomatic epilepsy and epileptic syndromes with simple partial seizures, not intractable, without status epilepticus
G40.111	Localization-related (focal) (partial) symptomatic epilepsy and epileptic syndromes with simple partial seizures, intractable, with status epilepticus
G40.119	Localization-related (focal) (partial) symptomatic epilepsy and epileptic syndromes with simple partial seizures, intractable, without status epilepticus
G40.201	Localization-related (focal) (partial) symptomatic epilepsy and epileptic syndromes with complex partial seizures, not intractable, with status epilepticus
G40.209	Localization-related (focal) (partial) symptomatic epilepsy and epileptic syndromes with complex partial seizures, not intractable, without status epilepticus

POLICY TITLE	MAGNETOENCEPHALOGRAPHY /MAGNETIC SOURCE IMAGING
POLICY NUMBER	MP 5.011

ICD-10- CM Diagnosi s Code	Description
G40.211	Localization-related (focal) (partial) symptomatic epilepsy and epileptic syndromes with complex partial seizures, intractable, with status epilepticus
G40.219	Localization-related (focal) (partial) symptomatic epilepsy and epileptic syndromes with complex partial seizures, intractable, without status epilepticus
G40.301	Generalized idiopathic epilepsy and epileptic syndromes, not intractable, with status epilepticus
G40.309	Generalized idiopathic epilepsy and epileptic syndromes, not intractable, without status epilepticus
G40.311	Generalized idiopathic epilepsy and epileptic syndromes, intractable, with status epilepticus
G40.319	Generalized idiopathic epilepsy and epileptic syndromes, intractable, without status epilepticus
G40.401	Other generalized epilepsy and epileptic syndromes, not intractable, with status epilepticus
G40.409	Other generalized epilepsy and epileptic syndromes, not intractable, without status epilepticus
G40.411	Other generalized epilepsy and epileptic syndromes, intractable, with status epilepticus
G40.419	Other generalized epilepsy and epileptic syndromes, intractable, without status epilepticus
G40.501	Epileptic seizures related to external causes, not intractable, with status epilepticus
G40.509	Epileptic seizures related to external causes, not intractable, without status epilepticus
G40.801	Other epilepsy, not intractable, with status epilepticus
G40.802	Other epilepsy, not intractable, without status epilepticus
G40.803	Other epilepsy, intractable, with status epilepticus
G40.804	Other epilepsy, intractable, without status epilepticus
G40.811	Lennox-Gastaut syndrome, not intractable, with status epilepticus
G40.812	Lennox-Gastaut syndrome, not intractable, without status epilepticus
G40.813	Lennox-Gastaut syndrome, intractable, with status epilepticus
G40.814	Lennox-Gastaut syndrome, intractable, without status epilepticus
G40.89	Other seizures
G40.A01	Absence epileptic syndrome, not intractable, with status epilepticus
G40.A09	Absence epileptic syndrome, not intractable, without status epilepticus
G40.A11	Absence epileptic syndrome, intractable, with status epilepticus
G40.A19	Absence epileptic syndrome, intractable, without status epilepticus

POLICY TITLE	MAGNETOENCEPHALOGRAPHY /MAGNETIC SOURCE IMAGING
POLICY NUMBER	MP 5.011

ICD-10- CM Diagnosi s Code	Description
G40.B01	Juvenile myoclonic epilepsy, not intractable, with status epilepticus
G40.B09	Juvenile myoclonic epilepsy, not intractable, without status epilepticus
G40.B11	Juvenile myoclonic epilepsy, intractable, with status epilepticus
G40.B19	Juvenile myoclonic epilepsy, intractable, without status epilepticus
l67.1	Cerebral aneurysm, nonruptured
Q28.2	Arteriovenous malformation of cerebral vessels
Q28.3	Other malformations of cerebral vessels

IX. REFERENCES

TOP

1. Food and Drug Administration (FDA). Devices@FDA: CTF Systems, Inc. Whole-Cortex MEG system (with optional EEG subsystem) (K971329). 1997

2. Food and Drug Administration (FDA). Devices@FDA: Elekta Neuromag with MaxFilter (K091393). 2010.

3. Food and Drug Administration. Section 510(k) Premarket Notification K152184 MagView Biomagnetometer. 2016.

4. Blue Cross and Blue Shield Association Technology Evaluation Center (TEC). Special Report: Magnetoencephalography and magnetic source imaging for the purpose of presurgical localization of epileptic lesions--a challenge for technology evaluation. TEC Assessments. 2008; Volume 23: Tab 8.

5. Knowlton RC, Elgavish RA, Limdi N, et al. Functional imaging: I. Relative predictive value of intracranial electroencephalography. Ann Neurol. Jul 2008;64(1):25-34. PMID 18412264

6. Knowlton RC, Razdan SN, Limdi N, et al. Effect of epilepsy magnetic source imaging on intracranial electrode placement. Ann Neurol. Jun 2009;65(6):716-723. PMID 19557860

7. Lau M, Yam D, Burneo JG. A systematic review on MEG and its use in the presurgical evaluation of localization-related epilepsy. Epilepsy Res. May 2008;79(2-3):97-104. PMID 18353615

8. Mouthaan, BB, Rados, MM, Boon, PP. Diagnostic accuracy of interictal source imaging in presurgical epilepsy evaluation: A systematic review from the E-PILEPSY consortium. Clin Neurophysiol, 2019 Mar 3;130(5). PMID 30824202

9. Kim H, Kankirawatana P, Killen J, et al. Magnetic source imaging (MSI) in children with neocortical epilepsy: surgical outcome association with 3D post-resection analysis. *Epilepsy Res. Sep 2013;106(1-2):164-172. PMID 23689013*

10. Schneider F, Irene Wang Z, Alexopoulos AV, et al. Magnetic source imaging and ictal SPECT in MRI-negative neocortical epilepsies: additional value and comparison with intracranial EEG. Epilepsia. Feb 2013;54(2):359- 369. PMID 23106128

POLICY TITLE	MAGNETOENCEPHALOGRAPHY /MAGNETIC SOURCE IMAGING
POLICY NUMBER	MP 5.011

11. Widjaja E, Shammas A, Vali R, et al. FDG-PET and magnetoencephalography in presurgical workup of children with localization-related nonlesional epilepsy. Epilepsia. Apr 2013;54(4):691-699. PMID 23398491

12. Albert GW, Ibrahim GM, Otsubo H, et al. Magnetoencephalography-guided resection of epileptogenic foci in children. J Neurosurg Pediatr. Nov 2014;14(5):532-537. PMID 25238627

13. Wang Y, Liu B, Fu L, et al. Use of interictal (18)F-fluorodeoxyglucose (FDG)-PET and magnetoencephalography (MEG) to localize epileptogenic foci in non-lesional epilepsy in a cohort of 16 patients. J Neurol Sci. Aug 15 2015;355(1-2):120-124. PMID 26066558 14. Koptelova AM, Arkhipova NA, Golovteev AL, et al. [Magnetoencephalography in the presurgical evaluation of patients with drug-resistant epilepsy]. Zh Vopr Neirokhir Im N N Burdenko. Feb 2013;77(6):14-21. PMID 24558750

15. Bagic A, Funke ME, Ebersole J. American Clinical MEG Society (ACMEGS) position statement: the value of magnetoencephalography (MEG)/magnetic source imaging (MSI) in noninvasive presurgical evaluation of patients with medically intractable localization-related epilepsy. J Clin Neurophysiol. Aug 2009;26(4):290-293. PMID 19602984 16. Sutherling WW, Mamelak AN, Thyerlei D, et al. Influence of magnetic source imaging for planning intracranial EEG in epilepsy. Neurology. Sep 23 2008;71(13):990-996. PMID 18809834

17. De Tiege X, Carrette E, Legros B, et al. Clinical added value of magnetic source imaging in the presurgical evaluation of refractory focal epilepsy. J Neurol Neurosurg Psychiatry. Apr 2012;83(4):417-423. PMID 22262910

18. Blue Cross and Blue Shield Association Technology Evaluation Center (TEC). Magnetoencephalography (MEG) and magnetic source imaging (MSI): presurgical localization of epileptic lesions and presurgical function mapping. TEC Assessments. 2003; Volume 18: Tab 6.

19. Papanicolaou AC, Simos PG, Castillo EM, et al. Magnetoencephalography: a noninvasive alternative to the Wada procedure. J Neurosurg. May 2004;100(5):867-876. PMID 15137606

20. Hirata M, Kato A, Taniguchi M, et al. Determination of language dominance with synthetic aperture magnetometry: comparison with the Wada test. Neuroimage. Sep 2004;23(1):46-53. PMID 15325351

21. Medical Advisory Secretariat. Functional brain imaging: an evidence-based analysis. Ont Health Technol Assess Ser. 2006; 6(22): 1-79. PMID 23074493

22. Niranjan A, Laing EJ, Laghari FJ, et al. Preoperative magnetoencephalographic sensory cortex mapping. Stereotact Funct Neurosurg. 2013;91(5):314-322. PMID 23797479

23. Tarapore PE, Tate MC, Findlay AM, et al. Preoperative multimodal motor mapping: a comparison of magnetoencephalography imaging, navigated transcranial magnetic stimulation, and direct cortical stimulation. J Neurosurg. Aug 2012;117(2):354-362. PMID 22702484

24. Bagic AI, Knowlton RC, Rose DF, et al. American Clinical Magnetoencephalography Society Clinical Practice Guideline 1: recording and analysis of spontaneous cerebral activity. J Clin Neurophysiol. Aug 2011;28(4):348- 354. PMID 21811121

POLICY TITLE	MAGNETOENCEPHALOGRAPHY /MAGNETIC SOURCE IMAGING
POLICY NUMBER	MP 5.011

25. Burgess RC, Funke ME, Bowyer SM, et al. American Clinical

Magnetoencephalography Society Clinical Practice Guideline 2: presurgical functional brain mapping using magnetic evoked fields. J Clin Neurophysiol. Aug 2011;28(4):355-361. PMID 21811122

26. Bagic AI, Knowlton RC, Rose DF, et al. American Clinical Magnetoencephalography Society Clinical Practice Guideline 3: MEG-EEG reporting. J Clin Neurophysiol. Aug 2011;28(4):362-363. PMID 21811123

27. Bagic AI, Barkley GL, Rose DF, et al. American Clinical Magnetoencephalography Society Clinical Practice Guideline 4: qualifications of MEG-EEG personnel. J Clin Neurophysiol. Aug 2011;28(4):364-365. PMID 21811124

28. Bagic AI, Bowyer SM, Kirsch HE, et al. American Clinical MEG Society (ACMEGS) Position Statement #2: The value of magnetoencephalography (MEG)/magnetic source imaging (MSI) in noninvasive presurgical mapping of eloquent cortices of patients preparing for surgical interventions. J Clin Neurophysiol. May 2017;34(3):189-195. PMID 2805985528.

29.Blue Cross Blue Shield Association Medical Policy Reference Manual. 6.01.21, Magnetoencephalography/Magnetic Source Imaging. Last reviewed and archived November 2020.

Other:

Taber's Cyclopedic Medical Dictionary, 19th edition.

X. POLICY HISTORY

TOP

MP 5.011	8/25/20 Consensus review. References updated, no change to policy statements.
	7/14/21 Consensus review. References updated, no change to policy statements.
	12/20/2022 Retirement Review.

Тор

Health care benefit programs issued or administered by Capital Blue Cross and/or its subsidiaries, Capital Advantage Insurance Company[®], Capital Advantage Assurance Company[®] and Keystone Health Plan[®] Central. Independent licensees of the BlueCross BlueShield Association. Communications issued by Capital Blue Cross in its capacity as administrator of programs and provider relations for all companies.